
Tracking Drift to Monitor LLM Performance
Failed to add items
Sorry, we are unable to add the item because your shopping cart is already at capacity.
Add to Cart failed.
Please try again later
Add to Wish List failed.
Please try again later
Remove from wishlist failed.
Please try again later
Adding to library failed
Please try again
Follow podcast failed
Please try again
Unfollow podcast failed
Please try again
-
Narrated by:
-
By:
About this listen
In this episode, we discuss how to monitor the performance of Large Language Models (LLMs) in production environments. We explore common enterprise approaches to LLM deployment and evaluate the importance of monitoring for LLM quality or the quality of LLM responses over time. We discuss strategies for "drift monitoring" — tracking changes in both input prompts and output responses — allowing for proactive troubleshooting and improvement via techniques like fine-tuning or augmenting data sources.
Read the article by Fiddler AI and explore additional resources on how AI observability can help developers build trust into AI services.
No reviews yet